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Abstract. The energy-momentum dispersion relation for a pulse-type non-linear excitation 
of a uniaxially anisotropic quantum ferromagnetic chain is derived using the spin-coherent 
representation and a continuum description. A physical interpretation is given for the 
spectrum obtained. 

1. Introduction 

The subject of solitons in low-dimensional magnets has attracted considerable attention 
in recent years. Solitons have been experimentally observed at low temperatures as 
non-linear elementary excitations (Kjems and Steiner 1978, Kopinga et a1 1984). The 
Heisenberg model-a quantum lattice Hamiltonian-is customarily used for the descrip- 
tion of these systems. The model may be isotropic, or it may contain uniaxial/easy-plane/ 
exchange anisotropy terms depending upon the magnetic system under consideration. A 
detailed study of spin dynamics in all these models is of considerable interest. 

Solitons are entities that commonly arise as exact solutions of certain special non- 
linear partial differential equations describing classical dynamics in a continuum. It must 
be noted, however, that the underlying system giving rise to these excitations could be 
quantum-mechanical and discrete, as in the present problem. This transition from the 
quantum lattice description to a classical continuous one must be properly formulated 
(Makhankov et a1 1987). Pioneering work on the continuum dynamics of the classical 
isotropic Heisenberg chain was carried out (Tjon and Wright 1977) essentially by the 
formal substitution of the spin operators in the Hamiltonian by classical vectors. (This 
is a good approximation for large spin values, S- E.) Their analysis showed that 
the isotropic model supports pulse-type solitons. The energy-momentum dispersion 
relation was also determined. More recently it has been shown (Balakrishnan and Bishop 
1985) that, starting with the quantum spin-operator evolution equation (valid for all 
spin values) for the isotropic model, and writing down the continuum version of the 
corresponding evolution equation for the diagonal matrix elements in the spin-coherent 
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representation, the classical continuum equation given by Tjon and Wright (1977) is 
obtained. The coherent-state description represents a more rigorous derivation of the 
correspondence with the classical solutions since it takes into account the quantum 
character of the spin operators. 

In this paper, we apply the spin-coherent-state formalism to the case of a quantum 
chain with uniaxial anisotropy. When the spins are considered to be classical vectors, 
the evolution equation can be solved exactly, irrespective of the magnitude of the 
anisotropy, to give pulse solitary-wave solutions for the spin evolution equation (Long 
and Bishop 1979). Subsequently the energy-momentum dispersion relation was derived 
for the single-ion anisotropy case (Sasada 1982) by adopting the variational method used 
(Tjon and Wright 1977) for the isotropic classical case. In our present formalism, we 
start with the evolution equation of the quantum spin-flip operator and use spin-coherent 
states to establish the correspondence with the classical solutions. We do not consider 
easy-plane and exchange anisotropies in this paper. It is known that for these cases, in 
contrast to the uniaxial case, one cannot find exact time-dependent solutions to the 
classical evolution equation, owing to the anisotropy. Such solutions can be found only 
within special approximations (Mikeska 1978, Kapor et a1 1986), although exact static 
kinks exist for both types of anisotropy (Frahm and Hokyst 1989). 

In contrast to the classical formalism in which the spins are treated as classical 
variables, the spin value S is expected to play a significant role in the quantum formalism. 
For instance, for S = 6 a single-ion anisotropy term such as A C,(S:)2 plays no role at all 
in the quantum formalism because of the operator identity (S : )2  = 4, whereas in a 
classical formalism it gives a non-vanishing contribution (Makhankov et a1 1987, Sasada 
1982). Furthermore, the spin value S appears as a mere scale factor in the expressions 
of the various physical quantities in the classical case, and does not affect the functional 
form of the dispersion relation. However, it is reasonable to expect that the dependence 
on S will be non-trivial when quantum effects are included. The conclusions based on 
the spin-coherent formalism (Balakrishnan and Bishop 1985) lend support to this. The 
aim of the generalised coherent-state formalism is not to derive conclusions regarding 
the underlying discrete quantum Heisenberg chain, based on continuum results, since 
distinct discrete models (integrable/non-integrable) could lead to the same continuum 
model (Papanicolaou 1987). Also ‘topological’ terms, which have been suggested as 
sources of distinctions between spectra for integral and half-odd-integral S (Haldane 
1985) in antiferromagnetic chains, may be inadequately treated. Our motivation is to 
obtain information about the dynamics of the parameters describing the quantum state 
of the continuum system. Spin-coherent states provide an ideal framework for the study 
of solitons, which are in a sense coherent ‘classical’ entities, as discussed earlier in this 
section. 

2. The anisotropic model and the evolution equations 

Consider a one-dimensional magnetic system described by the Hamiltonian 

characterised by an exchange energy J > 0 and a single-ion, uniaxial anisotropy par- 
ameter A > 0. Here B ,  is the external field along the f axis and gpB is the magnetic 
moment. 
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The non-linear excitations of this system have been studied by considering the spins 
to be classical vectors and by using the continuum approximation, to obtain pulse- 
type solitary-wave solutions (Long and Bishop 1979). Treating the spins as quantum- 
mechanical operators, the evolution equation of the spin-raising operator S,+ at the site 
j is given by 

= -]Sf (S,? 1 + S:+ 1 )  +](Sf- 1 + Sf+ 1)s; + A  (Sf S: + S: S f )  +gp B B3 S: 

(2.2) 

where [Sp, Sf] = iE,pyS[B,, has been used. 
The advantages of using a spin-coherent representation (Radcliffe 1971) to describe 

spin dynamics arising from non-linear evolution equations for spin operators has been 
discussed elsewhere in the context of the isotropic Heisenberg model (Balakrishnan and 
Bishop 1985). Here, we summarise some of the salient features of the representation. 

The spin-coherent states I LL , )  at a site j are defined as follows: 

IP,) = (1 + IP, I * >  -’exp(p,S, 1 IO), (2 .3)  

where p, is a complex quantity, IO), is the ground state with Sf IO), = SIO), and S; is the 
spin-lowering operator. The states (2.3) are normalised, non-orthogonal and over- 
complete. Parametrising ,U, in terms of angle variables e, and q, as 

P, = tan(O,/2) exp(iq,) (2.4) 

(e,,  q,) =  COS(^^,)]*' exp[tan(+OJ) exp(iq,)S;]jO),. (2.5) 

equation (2.3) becomes 

The completeness relation is 

( 2 . 6 ~ )  

The non-orthogonality relation is 

(Pi1P.i) = (1 +pC1i*j)2s(1 + I ~ . i / ~ ) ’ ( 1 +  lpjI2)’ 

= {cos(&) cos(iej) + sin(t8,) sin(@;) exp[i(qi - qj) ] }2s.  (2.6b) 

The expectation values of the single-site operators are calculated to be just the classical 
expressions: 

(S i ,  c p j l S f l B j ,  qj) = Ssin B j  exp(iqi) 

(e ; ,  qjls;lej, q j )  = scos e j .  
Thus 0, and qj represent the polar and azimuthal angles of a classical vector S 
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However, the correspondence with the classical expressions does not hold in general 
for the expectation value of the product of spin operators at the same site. For instance, 
using equations (2.5) and (2.6) it may be shown that (Lieb 1973) 

(e, ,  q,l(s;)*le,, q,) = ~ ( s - i )  COS* e, + is. (2.9) 
Similarly, 

(e, ,  q , /S;ST +S,?SfIO,, q,) = 2S(S-S) sin 8, cos 8, exp(iq,). (2.10) 

On the other hand, if one treats the spins as classical vectors, the expressions cor- 
responding to equations (2.9) and (2.10) are, respectively, 

(s;)* = S* cos*e, (2.11) 

S;S: + S:S; = 2S2 sin e, cos e, exp(iq,). (2.12) 

and 

For a system of Nspins, the spin-coherent states are the direct product states 

(2.13) 

Taking the diagonal matrix elements of the operator evolution equation (2.2) using 
the direct-product representation given in equation (2.13), we obtain the following 
coupled non-linear differential difference equations for the c-numbers 8, and q,: 

h sin 8, dq , /d t  = JScos 8, [sin cos(cp,,, - q,) 

+ sin 8,- I cos( q,- - q,)] -1s sin 8, (cos 8,+1 + cos 

- gPBB3 sin 8, - A q ( S )  sin 8, cos 8, (2.14) 

and 

hdO,/dt =JSs in  sin(q,-cp,+1)+JSsin8,-l  s in(q,-q,- l ) .  (2.15) 

In deriving equations (2.14) and (2.15) we have made use of equations (2.7), (2.8) and 
(2.20), and the property that the states at a site are normalised to unity. In equation 

q ( S )  = (2s - 1). (2.16) 

Thus for the case S = t, the anisotropy term involving A vanishes identically in the 
evolution equations (Makhanov et a1 1987). 

This is to be expected in any quantum formalism since the anisotropy term 
A C,(S:)* in the Hamiltonian (2.1) contributes just a constant for the case S = t ,  owing 
to the operator identity (Sf)* = t .  Equations derived (for the easy-plane case) by taking 
the spins to be classical variables (Wysin et a1 1984) have the same form as equations 
(2.14)and(2.15)exceptthatq(S)isreplacedby2S,A + -Aand8-+ (x/2 - 8 ) .  Hence, 
classically for all S (including S = 4) the anisotropy term makes a finite contribution. 
For S S 1, the quantum equation reduces to the classical one, a desirable feature. 

(2.14) , 

In the continuum approximation, equations (2.14) and (2.15) reduce to 

-A  q(S)sin &os 8 - gpBB, sin 8 

(2.17) 
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and 

d 6  a2v 
at ax’ 

h-= -JSa2sin8--2JSa2cose (2.18) 

Defining cos 6 = p and writing q = q, equations (2.17) and (2.18) become 

(2.19) 

and 

h-=JSa2 (1 - p * ) 7 - 2  a2q  (””1 (91, a p  at [ ax p d x  ax 
(2.20) 

We seek solitary-wave solutions of equations (2.19) and (2.20) of the form 

4 = q(u) + Q l t  P = P ( U >  (2.21) 

U = (x - ut)/,. (2.22) 

where 

Then equations (2.19) and (2.20) reduce to 

and 

dP d 2 q  d 
d u  d u  d u  d u  du  d u  

V - = - (1 - p ’ )  7 + 2p (““1 (9) = - - (( 1 - p 2 )  “1 (2.24) 

where 

V = u/JSah-’ TQ = Aq(S)/JS 

Q 3  = WBB3/JS  w = hQ,/JS. 

Equation (2.24) is integrated to give 

(2.25) 

where p o  is an integration constant. Substituting equation (2.26) in equation (2.23) and 
using the identity 

d [(p’ - i ) - l  (%I2] (2.27) 

in the resulting equation yields after some algebra 

(dp/duI2 = F ( P )  (2.28) 

where 

F ( p )  = 2Qp(p2 - 1) + zQp2(p2 - 1) - V’(1 + p ;  - 2ppo) - p 1 ( p 2  - 1). (2.29) 
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In equation (2.29), Q = Q3 + w andp ,  is an integration constant. Settingp = (1 - 2s) 
so that s = sin2(8/2), we get 

( U  - u O )  -2 d s / [ F ( ~ ) ] ” ~  (2.30) J 
where 

F(s)  = -V2(1 - p i ) ’  + 4s(p, - 2Q - ZQ - poV2) + 4s2(6Q + 5 ~ ,  - p i )  

- 16s3(Q + 2t,) + 1 6 ~ ~ ~ 0 .  (2.31) 

Pulse-type solutions of equation (2.30) may be determined by choosing integration 
constants p o  and pi  such that the constant and linear terms in F(s)  vanish: p o  = 1 and 
p1 = V2 + t, + 2Q. Then equation (2.30) yields 

S = Sin2(8/2) = 2K;/[(Q + 22,) + (a2 + 2Qv2)”* COS~(~KQ<)] (2.32) 

where 

< = (U - Uo) and K ;  = (Q -t- ZQ - av’) 2 0. (2.33) 

From equation (2.26), 

(dq /du )  = V/2cos2(8/2). 

Substituting equation (2.32) in (2.34) and integrating leads to 

(2.34) 

(2.35) 

The classical solutions are identical to those given in equations (2.32) and (2.35) except 
that zQ is replaced by tCl = 2A/J, the corresponding classical expression for a given S 
(See equations (2.25) and (2.16)). 

In what follows explicit calculations for the conserved quantities, namely the energy 
E ,  the linear momentum P and the angular momentum M ,  will be given for the case S = 
1. This provides an illustrative example, since as demonstrated for the isotropic model 
(Balakrishnan and Bishop 1985) the behaviour of the dispersion relation for other S 
values will be qualitatively similar. For the anisotropic case, however, S = 2 is a notable 
exception, as discussed in the previous section. 

The exact classical dispersion relation can be derived analytically. By comparing it 
with the dispersion relation derived using the spin-coherent representation, we will show 
that quantum effects play an important role in the dynamics of those solitons with small 
widths. This is as expected, since the uncertainty in the momentum would be large for 
a ‘thin’ soliton, and its momentum consequently would differ appreciably from the 
corresponding classical value. Our results will show a departure from the classical 
dispersion relation for the small-width solitons. In contrast, for solitons with large 
widths, the quantum effects are physically expected to be negligible and our formalism 
confirms that the dispersion relation is practically identical to the classical one. 

3. Classical soliton dispersion relation 

When the spins are treated as classical variables, the derivation of the soliton dispersion 
relation proceeds as follows. In the continuum approximation, the Hamiltonian (2.1) 
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yields the following expression for the total energy (on subtracting the ground-state 
energy) : 

ECI = JS2 j-, [&(d8/du)2 + &sin28(dq/du)2 
t x  

+ 2(R3 + zcI) sin2(8/2) - 22,, sin4(e/2)] du (3.1) 

where 

tCl = 2A/J. 

We have 

(de/du)* = cosec*B(dp/du)*. 

Using equations (2.26) and (2.28) in equation (3.1) gives 
+ X  

E,, = 2JS2 1- d u[(2Q3 + w + 2t,,)sin2 (8/2) - 4tClsin4( f3/2)]. ( 3 4  

The total angular momentum is given by 
ccc 

(3.3) 

Finally, the total momentum is given by (Tjon and Wright 1977, Long and Bishop 1979) 

Equivalently, 
t x  

(1 - cos e )  (2) d u  = S V j + c c  tan2 (i) du 
-cc 

(3.5) 

where equation (2.34) has been used. 
For pulse solitary-wave solutions in the classical case, the expression for sin2( 8/2) is 

as in equation (2.32) with zQ replaced by t,,. Thus we calculate (Gradshteyn and Ryzhik 
1980) 

sin2(8/2) d u  = (2/2;j2) tanh-lx,, 

sin4(8/2) du = [(Q + 2 tc I ) / t~ /* ]  tanh-lx,, - Kcl/tCI (3.7) 

to find E,, and M,,, Here, 

(52 + 2t,,) - ( 5 2 2  + Z,,V2)1/2 1'2 

= ( (52 + 22,J + (Q* + tc,V2)1/2 1 
and 

Kf, = 52 + t,, - av2 3 0. 
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Finally 
+= 

tan2( 8/2) du = (4/V) sin-’ qcl (3.10) 

where 

qcl = { [ ( Q 2  + z,,V2)1/2 + (Q - gv*)]/2(Q* + TCl”1’2}’’2. (3.11) 

In evaluating equations (3.6), (3.7) and (3.10), the condition 

v2 c 4(Q + z,,) (3.12) 

hasbeenused. Usingtheseresults,equations (3.2), (3.3) and(3.5) become, respectively, 

Ec1 = 4JS2[(Sz,/z~/’) tanh-’X,, + Kcl] (3.13) 

Mc1 = (4S/tfj2) tanh-lXC1 (3.14) 

and 

P,, = 4 s  sin -’ qcl (3.15) 

giving 

P,1 = 2 s  cos-’[(iv2 - Q>/(Q2 + tc,V2)”2] (3.16) 

Using equation (3.14) in (3.13) we get 

E,, = J[MC1SQ3 + 4S2(Q + t,, - tV2)1’2]. (3.17) 

Defining 

p = (Q2 + rc,V2)1’2/(Q + 22,J (3.18) 

we have from equations (3.8) and (3.14). 

tanh2(M,,zf/’/4S) = (1 - /3)/(1 + p). (3.19) 

Thus 

sinh(M,,~f(~/2S) = (1 - /32)1/2//3. (3.20) 

Using equations (3.16) and (3.20) we have 

~os(P,,/2S)/sinh(Mrf~~/2S) = (BV2 - Q)/(Q + 2t,1)(1 - p2)’l2. 

Equations (3.20) and (3.21) combine to give 

[cosh(Mta(*/2S) - ~os(P,,/2S)]/sinh(Mzf/~/2S) = (Q + zC1 - iV2)1/2/zE/2. 

Substituting equation (3.22) in equation (3.17) yields the classical dispersion relation 

(3.21) 

(3.22) 

E,, = JM,,SQ3 + 4JS2[tE12/sinh(M,lraj2/2S)] 

X [cosh(MC1~f/’/2S) - COS(P , , /~S ) ]  (3.23) 

where 0 < P,, c 2nS. 
This classical spectrum agrees with that obtained using a variational method (Sasada 

1982). It is similar in form to the exact excitation spectrum of the spin4 quantum discrete 
(Heisenberg-Ising) exchange anisotropic model (Johnson and McCoy 1972) derived 
using the Bethe ansatz method. The M = 1 soliton spectrum coincides with the magnon 
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spectrum and M = 2, 3, . . . semiclassical solitons (in the continuum model) may be 
identified with multi-magnon bound states. Such a correspondence also exists for the 
isotropic model (Jevicki and Papanicolaou 1979). 

Our formalism will show that the effect of quantum fluctuations is to destroy this 
correspondence in the case of narrow-width solitons with energy higher than a certain 
critical energy. However, it is still possible to identify low-energy solitons with magnon 
bound states. 

4. Soliton dispersion relation using spin-coherent representation 

First we calculate the expressions E,, M O  and Po for the total energy, angular momentum 
and momentum, respectively, by defining them as usual to be diagonal matrix elements 
in the spin-coherent basis. E,  is calculated from the Hamiltonian (2.1) and 
MQ = @,(S - S?)). Note that both these are expressed as discretesums over lattice sites. 
Using equation (2.13) and the continuum approximation yields expressions for E ,  and 
MQ that are identical to the classical expressions (3.2) and (3.3), leading respectively to 
(3.13) and (3.14), with tcl (=2A/J) replaced by zo = zcl(S - &) /S.  Thisis because, except 
for the anisotropy term in the Hamiltonian, all other terms occur as single spin operators 
at a site, so that the classical values are obtained (see equations (2.7) and (2.8)). Thus 
we have (for S # i) 

E, = 4JS2[(Q3M,/4S) + KQ] (4.1) 
MO = (4S/zg2) tanh-'X, (4.2) 

where X, is defined as in equation (3.8) (with zCI replaced by to) and KO is given in 
equation (2.33). (It must be mentioned that in the figure captions, the symbol t has been 
used to denote tcI for the classical spectrum and to for the quantum spectrum.) 

Determining P,, however, is not so straightforward, as has already been emphasised 
in the context of the isotropic model (Balakrishnan and Bishop 1985). In contrast to E 
and M it is not obvious how to construct a total momentum operator as a discrete s u m  
over sites of products of spin operators defined at each site, so as to use equation (2.13) 
to find its diagonal matrix elements. We shall return to this problem subsequently. Note 
that the translation operator Tcan be defined as 

so that 

However, finding (log f) is not an easy task, although it is possible to construct f in 
terms of the trace of the product of (2s + 1)-dimensional matrices. It is straightforward 
to calculate (f) in the coherent-state basis (Haldane 1986): 

f = exp(-iPa//i) (4.3) 

pQ = ( P )  = (i/i/a)(log f). (4.4) 

n n 

Using equation (2.6b), one obtains 

where an = cos(88,) and Pn = sin(i0,) exp(iqn). Using the continuum approximation, 
which assumes I' 3 a (r = 2aKGl being the width of the soliton; see § 5 ) ,  we have 

After some algebra equation (4.6) reduces to 
anPl  -+ a(x)  - a(aa/t./ax) + o ( a 2 ) .  (4.7) 
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(f') = exp [ i S j  du(cos 8 - 1) ($11 (4.8) 

From the solutions (2.32)-(2.35) and expression (3.5) for P,,, it is clear that 

( f') = exp( - iPa/fi) = Ts (4.9) 
where P is given by an expression identical to the classical expression (3.16), with zCi 
replaced by zQ. From equation (4.9) 

P = (ifi/a) log(f) .  (4.10) 
It has been proved (Haldane 1986) that log(p) = (log f') in the continuum model, so 
that comparing equations (4.4) and (4.10) it is concluded that PQ = P .  This in turn 
implies that quantum corrections to the classical dispersion relation are absent in a 
continuum model in the spin-coherent basis. However, as has been discussed in detail 
elsewhere (Balakrishnan and Bishop 1989), this proof is valid only for limitingly low- 
energy solitons with width r +. W .  As is well known, the minimum width of a soliton is 
finite and fixed by the parameters of the given magnetic system. For the continuum 
approximation to be justified, we must only ensure that rmin b a,  the lattice constant a 
remaining finite. It is then shown that PQ # P for solitons with width less than a certain 
critical width. The difficulties encountered in calculating PQ from (log f') have also been 
discussed. 

In view of this, the ansatz proposed for P (Balakrishnan and Bishop 1985) provides 
a useful alternative. It is obtained by first discretising the classical continuum expression 
in equation (3.4), then using the corresponding principle to replace the spin vectors by 
the corresponding operators at various sites, and finally symmetrising the resulting 
expression to make it Hermitian. Although the expectation value of this ansatz in the 
continuum approximation may not exactly coincide with that obtained from an exact 
calculation of equation (4.4) (if feasible), we do expect that it will manifest the qualitative 
features of the soliton dispersion relation that arise essentially due to quantum effects. 
The expression used is 

P = (h/2a) {(s;sY,+~ - s ; + ~ s Y , ) [ s ~ / ~ ( s  + 1)1'2 + + HC) (4.11) 
n 

where HC stands for Hermitian conjugate. Calculating diagonal elements of P in the 
spin-coherent basis and passing to the continuum description gives, for S = 1. 

PQ(S = 1) = ( P )  = (fi/2d/Za) (3 - -\/zcos 8) sin28 (4.12) 

Using equation (2.26) in equation (4.12) leads to 
+= +s fiV 

PQ(S = 1) = .\/z ((3 - a) sin2(8/2) du + 2 V 5  sin4(8/2) du) .  (4.13) 
a - - C O  I, 

Finally, substituting equations (3.6) and (3.7) in equation (4.13) yields (for B3 = 0) 

PQ(S = 1) = (fiv/a){iMQ[32/3 f 2(cc)/tQ) + 21 - 2zG'(cc) f zQ - iv2)'12}. (4.14) 

Combining equations (4.1) and (4.2) we get (for B, = 0) 
EQ = 4J( cc) f zQ - $v2) l''. (4.15) 

Equations (4.14) and (4.15) will be used to plot E,  versus PQ for a fixed value of the 
total angular momentum M Q .  
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Define 

c = (02 + Z0V2)1’*/(W + 22,). (4.16) 

From equations (4.2) and (3.8), 

M ,  = 4Szz1’* tanh-l [(1 - C)/(1 + C)]”’. (4.17) 

Hence fixing MO implies fixing the parameter C, so that equation (4.16) leads to 

V 2  = 20’[2cTQ - (1 - C)u][2CtQ + (1 + c)m]. (4.18) 

Since z, > 0, the condition V 2  3 0 shows that the internal frequency of the soliton 
satisfies the inequality 

U m i n  =S U m a x  (4.19) 

where 

om,, = -2Cz,/(l + C) = -za[l  - tanh*(M,~#~/4)]  (4.20a) 

and 

wmax = 2Cto/(1 - C) = t o / s inh2(Moz~/4 ) .  (4.20b) 

From equation (4.17), we have 0 < C <  1, since M O  is real. The constraint 
V2 < 4(w + zQ) (see equation (2.33) with R = U )  is automatically satisfied for C < 1. 

For tQ+ 0, equations (4.20) lead to om,,-+ 0 and w,,,+ (16/M2), as required for 
the isotropic case. Also, V = 0 when U = U,,, and w = U,,, for all z,. From equation 
(4.18), setting (d V/d w )  = 0, we see that the maximumvelocity Vs and the corresponding 
frequency us are given as 

Vs = 2 C 2 2 ( 1  - C2) = 2tg2/sinh(Mozg2/2S) (4.21) 

os = 2C2z0/(l - C2) = 2 z , / ~ i n h ~ ( M ~ z ~ ~ / 2 S )  (4.22) 

yielding the soliton energy 

Es = 4JS2tg2(1 - C)-l/* = 4JS2zg2 tanh(Mozi2/2S). (4.23) 

5. Results and discussion 

For a fixed value of C (i.e. fixed M,-see equation (4.17)), values of U lying in the 
range given in equation (4.19) are considered and the corresponding values of V2 are 
determined from equation (4.18). Equation (4.14) determines Po. The dependences of 
P, on U and V are given in figures 1 and 2, respectively. Figure 3 gives the plot of E, 
versus Po (for fixed M O )  in the absence of an external field. The corresponding classical 
plot of E,, versus P,, is also given in the same figure for comparison. The energy gap in 
both spectra (for P+ 0) appears due to the coupling of M to an effective magnetic field 
arising from the anisotropy term A ,  and vanishes for z + 0 (the classical plot is given for 
illustration in figure 3). The corresponding quantum plot studied earlier (Balakrishnan 
and Bishop 1985) has not been included in the figure. 

sin2(e/2) = ~K&/{[(Q + 2t,) - (R’ + z , v ~ ) ~ / ~ ]  + 2 ( ~ ’  + Z ~ V ’ ) ’ ’ ~  cosh2KQc) 

Writing the soliton solution in equation (2.32) as 

(5.1) 
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k Ih /SJ  ( P I 1 5 1  
- . 2 ,  - . 1 ,  0 ,  .1 , .2 1 .3 , .4 1 

64 
I 

51 

W 6 / S J  (M.2 )  
Figure 1. The quantum momentum (units of ha-') versus soliton internal frequency U (units 
of Jh-I) for S = 1, r = 0 .5 ,  M / S h  = 2 and 5 respectively. A schematic classical plot (S = =) 
is also shown. Curves: A, S = 1, t = 0 .5 ,  M/Sh = 2;  B, S = 1, r = 0 .5 ,  M/Sh  = 5 ;  C ,  S = =, 
t = 0.5. 

vh /SJo 
Figure 2. The quantum momentum (units of ha-') versus soliton velocity U (units of .Tali-') 
for S = 1, 7 = 0 .5 ,  M / S h  = 2 and 5 respectively. The corresponding classical plots (S = x )  

are also shown. Curves: A.  S = 1, t = 0 .5 ,  M / S h  = 2;  B. S = 1, t = 0 .5 ,  M/S f i  = 5 ;  C, S = 
x ,  t = 0.5,  M / S h  = 2 ;  D,  S = X, t = 0 .5 ,  MISh = 5. 

it is easily verified that as zQ- 0, the usual soliton solution for the isotropic model 
(Fogedby 1980) is obtained: 

sin2(O/2) = ( K t / Q )  sech2(Ko<). ( 5 4  

Here KO = (Q - $V2)'i2. Two different definitions for the soliton width I- have been used 
for the isotropic model, viz. r = a /Ko  (Fogedby 1980) and r = 2a/Ko (Haldane 1982). 
Using the latter definition, Haldane determined the condition to be satisfied by M for 
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p a / h s  

Figure 3. The classical and quantum soliton spectra: the energy E (units of J S 2 )  versus 
momentum P (units of ha-')  for S = 1, t = 0.5, M/Sh = 2 and 5 respectively. The gapless 
classical spectrum for the isotropic case t = 0 is also shown for M / S h  = 5. The hatched area 
is the part of the spectrum for M / S h  = 2 for which the continuum criterion ro> a is not 
satisfied. Curves: A, S = 1, t = 0.5, M / S A  = 2; B,  S = 1, t = 0.5, M / S A  = 5; C, S = 3, t = 
0.5, M I S 6  = 2; D, S = X ,  t = 0.5, M I S h  = 5 ;  E,  S = CO, t = 0, M I S h  = 5. 

the validity of the continuum approximation in that model. We will use its analogue to 
discuss the anisotropic case. Thus for zQ # 0 we define from Equation (5.1) 

rQ = 2a/KQ (5.3) 

rQ = (US2 /EQ)a  = 2a/(w + tQ - ~v*)"*. (5.4) 

where KQ is given in equation (2.33). Using equations (4.15) and (5.3), we have 

Note that similar expressions hold good for the classical case as well, as discussed in 0 2 
and 03. We will therefore drop the subscript Q in the following discussion. 

If the continuum model is to describe the underlying discrete system (classical/ 
quantum) self-consistently, we must require (Haldane 1982) r b a and the asymptotic 
soliton wavenumber (see equation (2.35)) ko = 4V 6  d. The former implies a condition 
on the minimum soliton width, while the latter implies a condition on the maximum 
value of k,. Let us discuss the soliton widths first. 

Let rmin and rmax denote the minimum and maximum possible soliton widths. Using 
equations (4.17) to (4.20) in equation (5.4) we get 

and 

For a given S ,  z and M ,  we derive a quantitative criterion for M by demanding that the 
whole spectrum of solitons fulfils r b a ,  i.e. rmin b a. This yields 

rmin = 2a/(omax + z)l12 = 2az-'12 tanh(Mz'12/4S) 

rmax = 2a/(omin + t)l/* = 2az-' /* coth(M~' /~/4S) .  

M b 4Sz-l12 tanh-'(z1I2/2). (5.7) 

M b  2s (5.8) 

(5 .5)  

(5  9 6) 

For z + 0, equation (5.7) reduces to 



1882 R Balakrishnan et a1 

as found earlier (Haldane 1982) (rmax+ as t + 0). Equation (5.7) also implies the 
restriction t < 4. Furthermore, the condition I‘ b a combined with equation (5.4) gives 

To satisfy the second ‘continuum’ condition ko = V/2 4 n for all solitons with fixed 
E,  S 8 JS2. 

values of S ,  t and M ,  we need ,Tax 4 n or Vs Is 2n. Equation (4.21) yields 

~~ /* / s inh (Mt ’ /~ /2S)  Is n. (5.9) 
It is easy to verify that equation (5.9) implies a less restrictive condition on M than 
equation (5.7). In the limiting case t + 0, equation (5.9) leads to 2S/M 6 n, in agree- 
ment with the result for the isotropic case (Haldane 1982). 

As an illustrative example, we take S = 1, z = 0.5. Equation (5.7) gives M b 2.09, 
while equation (5.9) leads to M 3 0.63. Figure 3 gives E ,  versus P,  for M = 2 and M = 
5. Using equations (5.5) and (5.6) we get 

rmln = 0.96a Fmax = 8 . 3 3 ~  for M = 2 

rmln = 2a rmax = 3 . 9 9 ~  for M = 5. 

Thus for M = 2, only a very small part of the (classical and quantum) spectrum 
corresponding to E > US2 (see hatched portion in figure 3) does not meet the require- 
ment rmln b a. For M = 5,  this cut-off in energy does not affect the spectra. More 
generally, it is clear that, for M b 2, the full spectrum is physically relevant. In particular, 
both the upper and lower branches of the quantum spectrum must be considered. For 
very large values of M ,  E,, + ~JS’T’’~ (see equation (3.23)) for 0 < P,, < 2nS. For the 
quantum case, the separation between the upper and lower branches decreases as M 
increases. 

Figure 2 shows that the maximum velocity corresponds approximately to the maxi- 
mum momentum (for a given M) in the quantum case. Thus the energy E,  at which the 
upper branch begins can be evaluated from equation (4.23) to be E ,  = 5.48 for M = 2 
and E,  = 2.99 for M = 5 (compare with figure 3). Equation (5.4) shows that higher 
energy values correspond to high-amplitude, narrow-width solitons. The quantum cor- 
rection (AP)  to the classical soliton momentum, which is vanishingly small for low- 
energy solitons with large widths, is expected to increase and become finite as the energy 
increases, essentially because of the effect of localisation caused by the smallness of the 
width. Since the maximum energy is the same for both classical and quantum models, 
this increase in (AP) can be consistently accommodated only if the E, versus P,  curve 
bends back, leading to the two branches in figure 3. Thus the inclusion of quantum 
effects leads to the existence of a maximum critical momentum (and velocity) above 
which the pulse-type excitations become unstable. We conclude by noting that there will 
be no restrictions on Msuch as in equations (5.7) and (5.9) if one is interested in studying 
quantum effects in a continuum spin model per se, without relating it to an underlying 
discrete chain. 
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